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Abstract

Sandia National Laboratories has conducted a sequence of studies on the performance of lithium ion and other types of electrochemical

cells using inductive models. The objectives of some of these investigations are: (1) to develop procedures to rapidly determine performance

degradation rates while these cells undergo life tests; (2) to model cell voltage and capacity in order to simulate cell output under variable load

and temperature conditions; (3) to model rechargeable battery degradation under conditions of cyclic charge/discharge, and many others.

Among the uses for the models are: (1) to enable efficient predictions of battery life; (2) to characterize system behavior.

Inductive models seek to characterize system behavior using experimentally or analytically obtained data in an efficient and robust

framework that does not require phenomenological development. There are certain advantages to this. Among these advantages is the ability

to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write

mathematical functions describing their behavior. We have used artificial neural networks (ANNs) for inductive modeling, along with

ancillary mathematical tools to improve their accuracy.

This paper summarizes efforts to use inductive tools for cell and battery modeling. Examples of numerical results are presented.
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1. Introduction

Mathematical models of physical systems are constructed

to facilitate our understanding of mechanisms that lead

to specific responses and to enable response predictions.

They are constructed in two basic frameworks: deductive

(or phenomenological) and inductive (or data based).

Models are built in the phenomenological framework

in most areas of science and engineering as a reflection

of our desire to understand the fundamental mechanisms

underlying complex phenomena. When phenomenological

models can be successfully made to simulate complex

phenomena, then users typically have confidence that all

underlying phenomena are adequately understood and

that the mathematics linking component phenomena model

system behavior correctly. One potential drawback of

phenomenological modeling is that it is often difficult to

obtain satisfactory simulations of complex systems. There

are many reasons for this. Component behaviors may not

be satisfactorily modeled, and in complex systems it may

not be clear how individual components influence overall

response or even how collections of components interact

with one another. In view of these challenges, an alternative

to phenomenological modeling, such as an inductive

approach might be beneficial.

Inductive models are parametric frameworks with data-

based selection or training of the parameters. They usually

seek to simulate excitation/response or input/output rela-

tions as interpolations among measured data, and they do so

through adjustment of their parameters in a training process.

Specifically, inputs that lie within the hyperspace of the

training data are interpreted in terms of their neighbors and

mapped into the hyperspace of outputs as an interpolation

among the outputs corresponding to their neighbors. The

idea behind this mapping is shown in Fig. 1.

Artificial neural networks (ANN) are frameworks that

accomplish this type of mapping. We consider in this paper

the use of ANNs for the inductive modeling of input/output

relations in lithium-ion electrochemical cells. In particular,

we model a measure of power fade in lithium-ion cells as a

function of measurable cell characteristics. Some character-

istics such as cell capacity can be used as measured and

metrics of others may be developed. The particular ANN

framework used in this investigation is the connectionist

normalized linear spline (CNLS) network.

The realities of successful model construction in inductive

frameworks, however, require that models be parsimonious.
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Therefore, redundancy in input information needs to be

reduced as much as possible, and any successful representa-

tion needs to map inputs from a well-distributed input space

to their corresponding outputs. In view of this, we also

consider in this paper the use of transformations that expand

measured data into well-behaved spaces. Specifically, we

use the singular value decomposition (SVD) and Rosenblatt

transform. A numerical example of the use of these tools to

predict power fade of lithium-ion cells is presented.

2. Data reduction

It is often useful to express multi-dimensional quantities

in a reduced space of principal components, and this is true

in the current application. It is desired to express power

fade in lithium-ion cells as a function of cell impedance and,

possibly, other quantities. To do so efficiently in the induc-

tive framework, the information in the impedance needs to

be reduced as much as possible. There are many approaches

for accomplishing this, but one that is efficient and direct is

the SVD (see, for example, Golub and Van Loan [1]).

The SVD is an eigen analysis-based expansion. Its form is

expressed as follows: let xj; j ¼ 1; . . . ;N, be an ensemble

of (measured) column vectors. Each vector has length n.

In the current application these may represent complex-

valued, estimated impedances of cells. Each vector ele-

ment is the complex impedance of a cell at a particular

frequency. Construct a matrix of the vectors following the

prescription:

X ¼

xT
1

xT
2

..

.

xT
N

2
6664

3
7775 (1)

The SVD of X has the form:

X ¼ UWVT (2)

The SVD is computed via eigenvalue analysis of the matrix

(X�)T X. Matrices U and V have columns that are the left and

right singular vectors of X, respectively. U has dimension

N � n, and V has dimension n � n. W is the matrix of

singular values of X. It is square with dimension n � n.

Each of U and V is orthonormal with respect to the identity

matrix. W is diagonal and its elements are real and non-

negative. The elements of W are normally arranged in

descending order with the largest values at the top left,

and the columns of U and V are made to correspond to this

arrangement.

In terms of data expansion, the columns of V represent the

principal shapes present in the xj; j ¼ 1; . . . ;N. The com-

ponents of Ware the amplitudes corresponding to the shapes.

Large amplitudes indicate shapes strongly represented in the

data. The rows of U make the principal shapes and their

amplitudes compatible with the individual row vectors in X,

therefore, U can be thought of as a compatibility matrix. The

values in the first column are most important in characteriz-

ing the data features because they are associated with the

largest singular values; the values in the second column are

second most important, etc.

When the diagonal elements in W cover a wide span of

magnitudes, an accurate approximate representation of X
can be developed by eliminating some terms in the SVD. In

particular, when all zero-valued terms and some of the

smaller magnitude terms in W are eliminated along with

their corresponding columns in U and V, an approximation

for X can be established:

X ¼ uwvT (3)

where w is the diagonal m � m matrix containing the m

largest singular values from W (m � n), and u and v are the

matrices containing the first m columns of U and V, respec-

tively. The matrices u and v have the dimensions N � m and

n � m, respectively.

The following illustrates how SVD is applied to lithium-

ion battery analysis and modeling. For example, correlating

impedance data among a large number of cells tested under

Fig. 1. Input/output mapping.
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various conditions is a very challenging analytical task.

Consider an ensemble of 89 impedance estimates, three

of which are graphed in the Nyquist plot of Fig. 2. These

were obtained from 35 cells in the ‘‘new’’ state and follow-

ing exposure to various environments. Each impedance plot

is defined at 30 frequencies, and therefore, 30 complex

numbers are required to completely characterize each curve.

It is hoped that SVD might permit accurate, approximate

characterization of a segment of the curves with fewer than

30 data points. The ohmic part of each of the 89 impedance

curves was inserted as a row in X and the SVD was

computed. There are 89 singular values and 10 of these

are plotted in Fig. 3. The representation is clearly dominated

by the first few components. Notably, for example,

P3
k¼1WkkP10
k¼1Wkk

¼ 0:98

The first singular vector is graphed on the Nyquist plot of

Fig. 4. This singular vector is the most important component

in the ohmic part of the ensemble of the 89 impedance curves.

The first singular vector captures the great majority of the

behavior of all the impedance curves. Fig. 5 is a plot of the

magnitudes of the first two columns of the compatibility

matrix in Cartesian space. There are 89 data points. The

abscissa value of each point (its x coordinate) is the absolute

value of a first column element in the compatibility matrix,

u. The ordinate value of the point (its y coordinate) is the

absolute value of the corresponding second column element

of the matrix, u. Three columns could be plotted in a three-

dimensional space, four columns in a four-dimensional

space, etc. but these are difficult to visualize. Each point

in this space is a low dimensional representation of one of the

89 impedance curves in (three of which are shown in Fig. 2).

Later, the magnitude of each element in the first column of

the compatibility matrix will be used as one input to an ANN

whose output approximately characterizes a measure of the

power fade in lithium-ion cells. The other input to the ANN

will be cell capacity. Both inputs are normalized using a

transformation to be discussed in the following section,

before use as input to the ANN.

3. Data transformation

In addition to expressing the total information in all the

inputs to the ANN in a minimal (or canonical) set of

Fig. 2. Sample Nyquist plot of impedances.

Fig. 3. Singular values, W.

Fig. 4. Nyquist plot of the first singular vector from the ohmic part of the

ensemble of 89 impedance curves.

Fig. 5. Magnitude of the second column of the compatibility matrix vs. the

first column of the compatibility matrix for the SVD of the impedances in

Fig. 2.
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variables, it is also often useful (for the sake of accuracy) to

transform the inputs into a space in which they are well

distributed. ANN representations are not usually good extra-

polators, therefore, if the input data contains gaps or regions

where the data are highly constricted, it is difficult to

generate an accurate ANN mapping in these regions. For

this reason, transformation of the input data into a space in

which they are broadly distributed is desirable.

There are many transformations that seek to accomplish

this redistribution. The most general of these is the Rosen-

blatt transform (Rosenblatt [2]). It transforms data (or

functions) from an arbitrary space into another space with

user-defined joint probability density function (PDF). In the

current application we choose the transform space to be that

of uncorrelated, standard normal random variables.

The Rosenblatt transform of interest to us is defined as

follows. Let FX1...Xn
ðx1; . . . ; xnÞ;�1 < xj<1; j ¼ 1; . . . ; n,

denote the joint cumulative distribution function (CDF) of

the random variables Xj; j ¼ 1; . . . ; n. The Rosenblatt trans-

form into the space of uncorrelated, standard normal random

variables, Zj; j ¼ 1; . . . ; n, is defined:

Z1 ¼ F�1½FX1
ðx1Þ
; . . . ; Zn

¼ F�1½FXnjX1...Xn�1
ðxnjx1; . . . ; xn�1Þ
 �1 < xj < 1; j

¼ 1; . . . ; n (4)

where F(�) is the CDF of a standard normal random variable,

and F�1 is its inverse, and xj; j ¼ 1; . . . ; n, are the variates

corresponding to the random variables Xj; j ¼ 1; . . . ; n.

FX1
ðx1Þ is the marginal CDF of the random variable X1,

and FXnjX1:::Xn�1
ðxnjx1; . . . ; xn�1Þ is the conditional CDF of

Xn given X1 ¼ x1; :::;Xn�1 ¼ xn�1. These CDFs can be

obtained from the joint CDF FX...Xn
x1; . . . ; xnð Þ. When

joint realizations xj; j ¼ 1; . . . ; n, of the random variables

Xj; j ¼ 1; . . . ; n, are used on the right side of Eq. (4), they

map into joint realizations zj; j ¼ 1; . . . ; n, of uncorrelated,

standard normal random variables Zj; j ¼ 1; . . . ; n.

Use of the transformation defined in Eq. (4) requires

approximation of the joint CDF of the Xj; j ¼ 1; . . . ; n. This

can be established using the kernel density estimator. Define

the random vector:

X ¼

X1

X2

..

.

Xn

9>>=
>>;

8>><
>>:

(5)

and let xm;m ¼ 1; . . . ;M, be experimentally measured

realizations of X. Then the kernel density estimator of X,

an approximation to its joint PDF, is:

fXðxÞ ¼
1

Mð2pÞn=2en

Xm

m¼1

exp
1

2e2
jjx � xmjj2

� �
;

�1 < x < 1 (6)

where e is the window width of the approximation. In

applications, e can be chosen optimally using, for example,

a formula given in Silverman [3]. The approximate joint

CDF of X is the n-fold integral of Eq. (6). This can be

established directly in terms of the marginal CDF of a

standard normal random variable because of the absence

of coupling between terms in the kernel of Eq. (6). It is:

FX1...Xn
ða1; . . . ; anÞ ¼

1

M

XM

m¼1

Yn

j¼1

F
aj � xjm

e

� �
;

�1 < aj < 1; j ¼ 1; . . . ; n (7)

where xjm is the jth element in the realization xm. This

transformation is practically limited to random vectors of

relatively low dimension because the amount of data needed

to accurately form the approximations in Eqs. (6) and (7)

grows as a positive constant greater than one raised to the

power of the dimension n.

For example, consider the bivariate data plotted in Fig. 6.

These are joint realizations of the magnitudes of values from

the first column of the compatibility matrix of the 89

impedances (three of which are shown in Fig. 2), versus

capacity values from the corresponding physical experi-

ments on lithium-ion cells. For simplicity, we use the

symbol, C, to represent the magnitude of the first column

of the compatibility matrix of the impedances (also referred

to as the first principal component of the impedance). The

Rosenblatt transform of the joint distribution of the random

variables that yielded the data in Fig. 6 was approximated

using the procedure outlined above. The data in Fig. 6 were

then transformed using the representation from Eq. (7) in

Eq. (4). The result is shown in Fig. 7. If the transformation

were perfect, and a large amount of data were available, then

the data in Fig. 7 would display radial and circumferential

symmetries, generally falling within ‘‘circles’’ centered at

the origin. However, the transformation is not perfect

because the approximation in Eq. (7) is based on limited

data. Still, the points in Fig. 7 are well distributed and quite

Fig. 6. Joint realizations of the magnitudes of first principal component of

impedance, C, vs. capacity values.
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axisymmetric with no substantial gaps. They will prove

useful for establishing the input to an ANN.

4. Artificial neural network

There are numerous ANN frameworks. The one most

commonly used is the layered perceptron. It is robust and

easily trainable. However, we choose, in this application, to

use the CNLS network because it appears to be particularly

well suited to the current application (for details see Jones,

et al. [4]). This is an ANN of the radial basis function type.

Its form is defined as follows. Let

z ¼ gðxÞ (8)

define a deterministic mapping from the space of multi-

variate vectors x onto the scalar real line. Restrict g(�) to be

continuous and to have continuous first partial derivatives in

each of the variables of x. The identity gðxÞ ¼ gðxÞ can be

multiplied on both sides by the radial basis function, w(x, cj,

b), one of a collection of, say, N radial basis functions with

the same shape, and, for example, the following form:

wðx; cj; bÞ ¼ exp
�1

2b2
jjx � cjjj2

� �
; �1 < x < 1 (9)

The quantity cj is the ‘‘center’’ of the radial basis function,

and b > 0 is its width. Approximate the function g(x) on the

right side of the resulting identity with the first two terms in

its Taylor series, then sum over the set of radial basis

functions to obtain:

gðxÞ
XN

j¼1

wðx; cj; bÞ ffi
XN

j¼1

½gðcjÞ þ ðx � cjÞTDðcjÞ
wðx; cj; bÞ

(10)

where D(cj) is the vector of first partial derivatives of g(�)
with respect to each variable in x, evaluated at cj. Rearrange

the equation and simplify variable and coefficient expres-

sions to obtain:

gðxÞ ffi y ¼

PN
j¼1Aj

1

ðx � cjÞ

� �
wðx; cj; bÞ

PN
j¼1wðx; cj; bÞ

;

�1 < x < 1 (11)

where Aj is a 1 � ðn þ 1Þ row vector of parameters. The

parameters Aj; j ¼ 1; . . . ;N, correspond to the coefficients

in the Taylor series expansion of g(x) at the center location

cj. These are the parameters of the CNLS net and can be

identified or ‘‘trained’’ using any of a number of schemes.

When the training scheme permits efficient, adaptive iden-

tification of the parameters, then Eq. (11) represents an

ANN.

In the current application we will normally not need to

train the parameters adaptively. Rather, we will train them

using weighted least squares where the weighting function

is the same radial basis function that is defined in Eq. (9).

Further, the sums in the numerator and denominator of

Eq. (11) will not be executed over the entire set of radial

basis functions. Rather, they will only be executed over

those radial basis functions within some predefined dis-

tance of x (the distance is defined so that the magnitude

of the radial basis functions beyond that distance are all

small).

5. Experimental/numerical example

The combined experimental and numerical example pre-

sented here is simply a continuation of the one started in

previous sections. We seek to train an ANN to simulate the

input/output characteristics of some lithium-ion cell mea-

sures of behavior. Given the impedance estimate for a cell

and its capacity, we seek to predict a metric of its power fade.

The ANN to be trained to perform the prediction is a CNLS

net. It is trained using exemplars of the two inputs. The cell

capacity and the magnitude of the first column in the

compatibility matrix of the SVD of the impedance curves

are the two ‘‘raw’’ inputs. These are transformed into a space

that is approximately uncorrelated and standard normal

using the Rosenblatt transform before ANN training. The

Rosenblatt transform operation was described in the section

entitled ‘‘data transformation,’’ and the transformed input

pairs are shown in Fig. 7.

The pulse power capability of the cell is measured by

discharge and charge at 10% increments from 90 to 100%

state of charge (SOC) as shown in Fig. 8. From these curves,

a plot of available energy versus power can be constructed.

The maximum power point occurs at zero available energy

and is also shown in Fig. 8 as the crossing point between

the discharge and regen pulse power capability curves. The

metric used to track power fade was the power at the 300 Wh

PNGV available energy requirement.

Fig. 7. Joint realizations of the magnitude of the first principal component

of impedance, C, the vs. capacity, Rosenblatt transformed into an

approximately bivariate, standard normal space.
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A value of the pulse power capability metric is known for

each bivariate input exemplar (dot) in Fig. 7. A CNLS

network was trained using the estimated pulse power cap-

ability metric values (output exemplars) with the input

exemplars of Fig. 7. The ANN has N ¼ 8 centers. The

surface generated by the trained CNLS network above a

circle with radius of three units in the transformed input

space is shown in Fig. 9. In addition, the training data are

plotted as circles with vertical lines from the circles to the

ANN surface.

Because each point in the space of transformed inputs

corresponds to a bivariate quantity in the untransformed

space, the result shown in Fig. 9 can also be plotted above

data points in the space of capacity versus magnitude of the

first column in the compatibility matrix of the SVD of

impedances. This result is shown in Fig. 10.

Finally, the error of the ANN approximation at each

exemplar is plotted in Fig. 11. The errors are not plotted

in any particular order. The sample mean of the exemplar

errors is �0.0145, and the sample standard deviation is

2.416. The pulse power capability values span a range of

approximately 50 mW/cm2. The former result leads to the

conclusion that the model bias is negligible. The model

standard error is approximately 5% of the span of the data.

The fact that the standard error is not smaller leads to the

question: could the ANN model accuracy be improved, and

if so, how? Among other things, an attempt could be made to

include more raw inputs in the training data. For example,

data from the second and later columns in the compatibility

matrix could be used. Other measures of cell behavior might

also be included as raw inputs to the ANN.

6. Summary

Because our primary approach for developing understand-

ing of complex systems lies in the determination of math-

ematical descriptions of underlying sub-processes and

the combination of these descriptions into mathematical

models for the systems themselves, our goal in modeling

and analysis frameworks is usually to establish comprehen-

sive phenomenological models. However, because of the

Fig. 8. Example showing the pulse capability of a lithium-ion cell defined

in terms of curves established during discharge and regenerative charge of

a cell at different SOCs.

Fig. 9. Surface of trained CNLS network over the circle in the transformed

input space with radius of three units, plus data (shown as o) where C is

the magnitude of the first principal component of impedance.

Fig. 10. Plot of the same data as shown in Fig. 9 here plotted over the

untransformed input coordinates (C is the magnitude of the first principal

component of impedance).

Fig. 11. ANN error.
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difficulties involved in making such models accurate enough

for practical use, particularly in the predictive sense, we

must consider the potential for augmenting detailed phe-

nomenological models with inductive models. ANN have

the capability to transform and reduce complicated, coupled

systems into an inductive framework for mathematical

analysis and data-based modeling.

The study summarized here shows that at least one form

of ANN, the CNLS network (and probably, many others), is

capable of yielding an accurate approximation to an input/

output map involving lithium-ion cell behavior measures.

It was shown that the potential for creating an accurate

input/output map with an ANN is improved when the input

training data are transformed to eliminate (or diminish) input

dependencies and when the inputs are transformed into a

space where the exemplars are well distributed. Numerous

methods exist for accomplishing these tasks, and the exam-

ple presented in this paper is just one of them that seems

promising.

The CNLS ANN was trained to represent the pulse power

capability of lithium-ion cells using the inputs of cell

capacity and a metric of impedance. Model bias was found

to be negligible and the standard error was about 5% of the

span of pulse power capability data. The accuracy of the

representation could very likely be improved, and methods

for exploring this possibility were discussed.
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